LOCV calculation for Beta-stable matter at finite temperature

Physics – Nuclear Physics – Nuclear Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

LaTex, 20 pages

Scientific paper

10.1103/PhysRevC.62.044308

The method of lowest-order constrained variational, which predicts reasonably the nuclear matter semi-empirical data is used to calculate the equation of state of beta-stable matter at finite temperature. The Reid soft-core with and without the N-$\Delta$ interactions which fits the N-N scattering data as well as the $UV_{14}$ potential plus the three-nucleon interaction are considered in the nuclear many-body Hamiltonian. The electron and muon are treated relativistically in the total Hamiltonian at given temperature, to make the fluid electrically neutral and stable against beta decay. The calculation is performed for a wide range of baryon density and temperature which are of interest in the astrophysics. The free energy, entropy, proton abundance, etc. of nuclear beta-stable matter are calculated. It is shown that by increasing the temperature, the maximum proton abundance is pushed to the lower density while the maximum itself increases as we increase the temperature. The proton fraction is not enough to see any gas-liquid phase transition. Finally we get an overall agreement with other many-body techniques, which are available only at zero temperature.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

LOCV calculation for Beta-stable matter at finite temperature does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with LOCV calculation for Beta-stable matter at finite temperature, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and LOCV calculation for Beta-stable matter at finite temperature will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-149120

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.