Induced Connections in Field Theory: The Odd-Dimensional Yang-Mills Case

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

16 pages Plain-TeX, Freiburg THEP-94/12

Scientific paper

We consider $SU(N)$ Yang-Mills theories in $(2n+1)$-dimensional Euclidean spacetime, where $N\geq n+1$, coupled to an even flavour number of Dirac fermions. After integration over the fermionic degrees of freedom the wave functional for the gauge field inherits a non-trivial $U(1)$-connection which we compute in the limit of infinite fermion mass. Its Chern-class turns out to be just half the flavour number so that the wave functional now becomes a section in a non-trivial complex line bundle. The topological origin of this phenomenon is explained in both the Lagrangean and the Hamiltonian picture.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Induced Connections in Field Theory: The Odd-Dimensional Yang-Mills Case does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Induced Connections in Field Theory: The Odd-Dimensional Yang-Mills Case, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Induced Connections in Field Theory: The Odd-Dimensional Yang-Mills Case will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-144574

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.