Physics
Scientific paper
May 1996
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996soph..165..211k&link_type=abstract
Solar Physics, Volume 165, Issue 2, pp.211-222
Physics
12
Scientific paper
We have analysed a 35-min-long time sequence of spectra in the Ca ii H line, Na i D1 and D2 lines, and in a large number of strong and weak Fe i lines taken over a quiet region at the center of the solar disk. The time series of these spectra have been observed simultaneously in these lines under high spatial, spectral, and temporal resolution at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory. We have derived the line profiles and their central intensity values at the sites of the chromospheric bright points, which are visible in the H line for easy identification. We have done a power spectrum analysis for all the lines, using their central intensity values to determine the period of oscillations. It is shown that the 3 Fe i lines, present ˜ 23 Å away from the core of the H line representing the pure photospheric lines, Na i D1 and D2 lines, 6 Fe i lines at the wings of H line, and Can H line exhibit 5-min, 4.05-min, 3.96-min, and 3.2-min periodicity in their intensity oscillations, respectively. Since all these lines form at different heights in the solar atmosphere from low photosphere to middle chromosphere and show different periodicities in their intensity oscillations, these studies may give an idea about the spatial and temporal relation between the photospheric and chromospheric intensities. Therefore these studies will help to better understand the physical mechanisms of solar oscillations. It is clearly seen that the period of intensity oscillations decreases outward from the low photosphere to the middle chromosphere. Since we have studied a single feature at a time on the Sun (i.e., bright points seen in the H line) in all these spectral lines simultaneously, this may explain about the footpoints of the bright points, the origin of 3-min oscillations, and the relation to other oscillations pertaining to these locations on the Sun. We have concluded that 80% of the bright points are associated with dark elements in the true continuum, and they may seem to have a relationship with the dark intergranular lanes of the photosphere, after carefully examining the brightness (bright threads) extending from the core to the far wings of the H line at the locations of a large number of bright points, using their time sequence of spectra.
No associations
LandOfFree
Solar Oscillations in Strong and Weak Fraunhofer Lines over a Quiet Region does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Solar Oscillations in Strong and Weak Fraunhofer Lines over a Quiet Region, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solar Oscillations in Strong and Weak Fraunhofer Lines over a Quiet Region will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1421228