The quantum query complexity of read-many formulas

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

15 pages

Scientific paper

The quantum query complexity of evaluating any read-once formula with n black-box input bits is Theta(sqrt(n)). However, the corresponding problem for read-many formulas (i.e., formulas in which the inputs have fanout) is not well understood. Although the optimal read-once formula evaluation algorithm can be applied to any formula, it can be suboptimal if the inputs have large fanout. We give an algorithm for evaluating any formula with n inputs, size S, and G gates using O(min{n, sqrt{S}, n^{1/2} G^{1/4}}) quantum queries. Furthermore, we show that this algorithm is optimal, since for any n,S,G there exists a formula with n inputs, size at most S, and at most G gates that requires Omega(min{n, sqrt{S}, n^{1/2} G^{1/4}}) queries. We also show that the algorithm remains nearly optimal for circuits of any particular depth k >= 3, and we give a linear-size circuit of depth 2 that requires Omega (n^{5/9}) queries. Applications of these results include a Omega (n^{19/18}) lower bound for Boolean matrix product verification, a nearly tight characterization of the quantum query complexity of evaluating constant-depth circuits with bounded fanout, new formula gate count lower bounds for several functions including PARITY, and a construction of an AC^0 circuit of linear size that can only be evaluated by a formula with Omega(n^{2-epsilon}) gates.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The quantum query complexity of read-many formulas does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The quantum query complexity of read-many formulas, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The quantum query complexity of read-many formulas will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-141222

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.