Physics
Scientific paper
Jun 2005
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005jgre..11006001k&link_type=abstract
Journal of Geophysical Research, Volume 110, Issue E6, CiteID E06001
Physics
14
Planetary Sciences: Solid Surface Planets: Gravitational Fields (1221), Geodesy And Gravity: Satellite Geodesy: Technical Issues (6994, 7969), Planetary Sciences: Solid Surface Planets: Polar Regions
Scientific paper
The seasonal carbon dioxide (CO2) cycle on Mars results in a time-variable global redistribution of mass. These large-scale variations are associated with changes in the gravity field, mainly in the two zonal gravity coefficients $\bar{C}20 and $\bar{C_{30, which have been recently evaluated from Doppler tracking data of the Mars Global Surveyor (MGS) spacecraft. In the present study, we calculated these variations from the mass redistribution obtained from outputs of two general circulation models (GCM) as well as from CO2 thickness measurements by the High Energy Neutron Detector (HEND) instrument on board the Mars Odyssey spacecraft and compared them to the observations. Tracking observations provide one of the most direct measures of the global-scale atmospheric mass cycle. However, the associated uncertainties are relatively large, partly because the low-degree zonals obtained from a single orbiter tracking analysis are contaminated by higher-degree harmonics which are shown to have nonnegligible seasonal variations. Thus we investigated possibilities to improve the determination of the time-variable gravity field by means of simulated geodesy experiments. Additional radio tracking of a second spacecraft with suitable orbital characteristics was shown to be able to separate the higher-degree geodetic signatures. Radio links between landers on the Martian surface and a near-polar orbiter can further better estimate especially the even zonals.
Barriot Jean-Pierre
Dehant Véronique
Duron J.
Hoolst Tim Van
Karatekin Ö.
No associations
LandOfFree
Mars' time-variable gravity and its determination: Simulated geodesy experiments does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mars' time-variable gravity and its determination: Simulated geodesy experiments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mars' time-variable gravity and its determination: Simulated geodesy experiments will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1399135