In Situ Raman Spectroscopy Study on Dissociation of Methane at High Temperatures and at High Pressures

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2

Scientific paper

We investigate the stability and dissociation of methane, which is the most abundant organic molecule in the universe, using diamond anvil cell (DAC) with in situ Raman spectroscopy up to 903 K and 21 GPa. At the temperatures of 793 and 723K and the corresponding pressures of 16.15 and 20.30 GPa, methane dissociates to form carbon 'soot' and heavier hydrocarbons involving C=C and C=C bonds. However, if the pressure is not very high, methane remains stability up to the highest temperature of 903 K of the work. The four symmetric C-H bonds of methane split at high temperatures and at high pressures, and there is at least one phase transition of crystalline symmetry from face centred cubic (fcc) to hexagonal close packed (hcp) before dissociation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

In Situ Raman Spectroscopy Study on Dissociation of Methane at High Temperatures and at High Pressures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with In Situ Raman Spectroscopy Study on Dissociation of Methane at High Temperatures and at High Pressures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In Situ Raman Spectroscopy Study on Dissociation of Methane at High Temperatures and at High Pressures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1318880

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.