Physics
Scientific paper
Dec 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010jgra..11512326w&link_type=abstract
Journal of Geophysical Research, Volume 115, Issue A12, CiteID A12326
Physics
1
Radio Science: Ionospheric Physics (1240, 2400), Radio Science: Tomography And Imaging (7270, 8180), Radio Science: Magnetospheric Physics (2700)
Scientific paper
Energetic electrons (tens to hundreds of keV) deposit significant energy into the D layer of the ionosphere. Riometers provide a means of monitoring this electron precipitation by measuring the associated cosmic noise absorption (CNA), but individually they are incapable of resolving the associated energy. However, the combination of two imaging riometers with overlapping beams allows an estimate of the height of peak CNA and so the associated energy to be made. We examine two methods for estimating the height of CNA using data from two imaging riometers in northern Fennoscandia; a 3-D reconstruction of CNA using Occam's inversion and a technique based upon the triangulation of discrete absorption structures are developed. We compare these two methods with the results from a previously published technique. It is found that for the case studies and test phantoms the height triangulation and 3-D reconstruction offer improvement over previous methods. These techniques are tested by comparison with data from the EISCAT incoherent scatter radar. Observations show good correlation between the estimates of peak height of CNA from EISCAT and from the triangulation and 3-D reconstruction methods for this case. Three case studies are examined in detail, a slowly varying absorption, afternoon spike, and evening absorption spike event. Estimates of the characteristic energy are made. The substorm event had a characteristic energy of ˜5 keV, whereas the characteristic energy for the morning event was 17-20 keV. Analyses indicate the afternoon spike event having characteristic energy greater than 100 keV.
Honary Farideh
Kavanagh Andrew J.
Senior A.
Wild Peter
No associations
LandOfFree
Triangulating the height of cosmic noise absorption: A method for estimating the characteristic energy of precipitating electrons does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Triangulating the height of cosmic noise absorption: A method for estimating the characteristic energy of precipitating electrons, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Triangulating the height of cosmic noise absorption: A method for estimating the characteristic energy of precipitating electrons will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1297128