Physics
Scientific paper
Jan 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006aipc..813.1178b&link_type=abstract
SPACE TECH.& APPLIC.INT.FORUM-STAIF 2006: 10th Conf Thermophys Applic Microgravity; 23rd Symp Space Nucl Pwr & Propulsion; 4th C
Physics
Spaceborne And Space Research Instruments, Apparatus, And Components, Mars
Scientific paper
A human mission to Mars, if it is to be cost effective, should take maximum advantage of previous efforts at the Moon, in terms of habitats, heavy lift boosters, and vehicles. It must also make use of nuclear site power for bases. However, to make such an effort sustainable over many administrations, it should not make use of nuclear propulsion. It is proposed in this architecture that high power Solar Electric Propulsion based around the MET (Microwave Electro-Thermal) thruster with water propellant, as an upper stage for a heavy lift booster, will allow a 46MT basic payload package to be sent to Mars. ISRU is utilized on Mars for production of RP1 and LOX to achieve Mars ascent and Mars Orbit rendezvous with an interplanetary stage. Two full tests of ISRU and Mars ascent are assumed for a human-rating of the system and to preposition water and RP1 in Mars orbit for abort to Earth from Mars orbit.
No associations
LandOfFree
Mars X: A Mars Mission Architecture with Lunar-Mars Synergy does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mars X: A Mars Mission Architecture with Lunar-Mars Synergy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mars X: A Mars Mission Architecture with Lunar-Mars Synergy will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1283689