Turbulent Cascade Rates and Geometries in the Solar Wind at 1 AU

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2134 Interplanetary Magnetic Fields, 2149 Mhd Waves And Turbulence (2752, 6050, 7836), 2159 Plasma Waves And Turbulence, 7513 Coronal Mass Ejections (2101)

Scientific paper

Recent efforts that focus on the MHD extensions to Kolmogorov's 4/5 Law have shown that the interplanetary spectrum at 1 AU results from the intrinsically turbulent dynamic of the interplanetary medium. Cascade rates for energy flowing from large to small scales are in agreement with the rate of local heating as determined by the radial gradient of the thermal proton temperature. We continue this effort to place greater restrictions on solar wind type that refine our comparison with observations and we show that the transport of energy through the multi-dimensional spectrum leads to a 2D state that populates wave vectors perpendicular to the mean magnetic field. However, we also resolve a reduced cascade rate associated with moving energy to larger parallel wave vectors. The balance between these two cascades is examined in detail for fast and slow wind observations.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Turbulent Cascade Rates and Geometries in the Solar Wind at 1 AU does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Turbulent Cascade Rates and Geometries in the Solar Wind at 1 AU, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Turbulent Cascade Rates and Geometries in the Solar Wind at 1 AU will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1247696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.