Physics
Scientific paper
Apr 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009georl..3607104t&link_type=abstract
Geophysical Research Letters, Volume 36, Issue 7, CiteID L07104
Physics
13
Magnetospheric Physics: Planetary Magnetospheres (5443, 5737, 6033), Ionosphere: Plasma Waves And Instabilities (2772), Ionosphere: Wave/Particle Interactions (7867), Magnetospheric Physics: Solar Wind/Magnetosphere Interactions, Magnetospheric Physics: Numerical Modeling
Scientific paper
A self-consistent global three-dimensional kinetic study of Mercury's magnetosphere is carried out examining waves and instabilities generated by ion temperature anisotropy and plasma flow. The overall structure of Mercury's upstream bow shock and magnetosheath are qualitatively very similar to those of Earth. Beam-generated long-wavelength oscillations are present upstream of Mercury's quasi-parallel bow shock, whereas large-amplitude mirror waves develop downstream of the quasi-parallel bow shock in the magnetosheath. A train of mirror waves forms also downstream of the quasi-perpendicular bow shock. A velocity shear near the magnetopause can lead to formation of vortex-like structures. The magnetospheric cavity close to the planet's equatorial plane is filled with ions much hotter than the solar wind protons. A drift-driven plasma belt close to the equator is present in the model and contains plasma with high-temperature anisotropy, and the loss cone for charged particles in this region is large. The belt may cause diamagnetic effects superimposed on the planet's internal magnetic field and can interact with Mercury's magnetopause.
Anderson Brian J.
Hellinger Petr
Hercik David
Schriver David
Slavin James Arthur
No associations
LandOfFree
Kinetic instabilities in Mercury's magnetosphere: Three-dimensional simulation results does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Kinetic instabilities in Mercury's magnetosphere: Three-dimensional simulation results, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Kinetic instabilities in Mercury's magnetosphere: Three-dimensional simulation results will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1247552