Physics
Scientific paper
Jul 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010jgra..11507218w&link_type=abstract
Journal of Geophysical Research, Volume 115, Issue A7, CiteID A07218
Physics
1
Magnetospheric Physics: Plasma Convection (2463), Magnetospheric Physics: Numerical Modeling, Ionosphere: Plasma Convection (2760), Magnetospheric Physics: Magnetic Reconnection (7526, 7835), Magnetospheric Physics: Magnetosphere/Ionosphere Interactions (2431)
Scientific paper
Using numerical magnetohydrodynamic simulations, we examine the dipole tilt effects on the magnetosphere-ionosphere convection system when the interplanetary magnetic field is oblique northward (BY = 4 nT and BZ = 2 nT). In particular, we clarify the relationship between viscous-driven convection and reconnection-driven convection. The azimuthal locations of the two viscous cell centers in the equatorial plane rotate eastward (westward) when the dipole tilt increases as the Northern Hemisphere turns toward (away from) the Sun. This rotation is associated with nearly the same amount of eastward (westward) rotation of the equatorial crossing point of the dayside separator. The reason for this association is that the viscous cell is spatially confined within the Dungey-type merging cell whose position is controlled by the separator location. The ionospheric convection is basically a round/crescent cell pattern, but the round cell in the winter hemisphere is significantly deformed. Between its central lobe cell portion and its outer Dungey-type merging cell portion, the round cell streamlines are deformed owing to the combined effects of the viscous cell and the hybrid merging cell, the latter of which is driven by both Dungey-type reconnection and lobe-closed reconnection.
Gombosi Tamas I.
Kabin Konstantin
Rankin Robert
Ridley Aaron J.
Sofko George J.
No associations
LandOfFree
Dipole tilt effects on the magnetosphere-ionosphere convection system during interplanetary magnetic field BY-dominated periods: MHD modeling does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dipole tilt effects on the magnetosphere-ionosphere convection system during interplanetary magnetic field BY-dominated periods: MHD modeling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dipole tilt effects on the magnetosphere-ionosphere convection system during interplanetary magnetic field BY-dominated periods: MHD modeling will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1225699