Sufficiency in quantum statistical inference

Physics – Mathematical Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1007/s00220-005-1510-7

This paper attempts to develop a theory of sufficiency in the setting of non-commutative algebras parallel to the ideas in classical mathematical statistics. Sufficiency of a coarse-graining means that all information is extracted about the mutual relation of a given family of states. In the paper sufficient coarse-grainings are characterized in several equivalent ways and the non-commutative analogue of the factorization theorem is obtained. Among the applications the equality case for the strong subadditivity of the von Neumann entropy, the Imoto-Koashi theorem and exponential families are treated. The setting of the paper allows the underlying Hilbert space to be infinite dimensional.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Sufficiency in quantum statistical inference does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Sufficiency in quantum statistical inference, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sufficiency in quantum statistical inference will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-118842

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.