Temporal variations of coda Q: An attenuation-coefficient view

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Spatial and temporal variations of coda wave attenuation were identified in many studies, and particularly in relation to major earthquakes and volcanic eruptions. Both the coda quality factor, Qc, and its frequency dependence often change following such events, which is often attributed to variations in the properties of large volumes of the subsurface. However, Qc is also strongly sensitive to the assumed theoretical models, which are usually insufficiently accurate for constraining the actual relationships between the geometrical spreading, anelastic dissipation, and scattering. This inaccuracy often leads to significant exaggeration of attenuation effects and complicates the interpretation of temporal variations. To resolve this problem, this study uses a phenomenological approach based on the temporal attenuation coefficient χ instead of Qc. The attenuation coefficient often linearly depends on frequency f, with intercept γ=χ(0) related to the geometrical spreading and slope giving the "effective quality" factor Qe as dχ/df=πQe-1. Two published examples of temporal variations of local-earthquake coda are revisited: a non-volcanic (Stone Canyon in central California) and volcanic area (Mount St. Helens, Washington). In both cases, linear χ(f) patterns are found, with the effects of γ on coda decay rates being significantly stronger than those of Qe-1. At Stone Canyon, γ ranged from 0.035 to 0.06 s-1 and Qe varied from 3000 to 10,000, with γ increasing and Qe decreasing during the winter season. At Mount St. Helens, γ remained constant at ˜0.18 s-1, and Qe changed from 400 before the eruption to 750 after it. The observed temporal variations are explained by the near-surface changes caused by seasonal variations in the non-volcanic case and gas-, magma-, and geothermal-system related in the volcanic case. Scattering attenuation does not appear to be a significant factor in these areas, or otherwise it may be indistinguishable due to its fundamental trade-off with the background structure and anelastic attenuation in the data.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Temporal variations of coda Q: An attenuation-coefficient view does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Temporal variations of coda Q: An attenuation-coefficient view, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temporal variations of coda Q: An attenuation-coefficient view will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1155576

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.