Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
2005-10-03
J.Phys. A39 (2006) 9591-9610
Physics
High Energy Physics
High Energy Physics - Theory
Latex2e, 24 pages, no figures
Scientific paper
10.1088/0305-4470/39/30/013
Starting from a weak gauge principle we give a new and critical revision of the argument leading to charge quantization on arbitrary spacetimes. The main differences of our approach with respect to previous works appear on spacetimes with non trivial torsion elements on its second integral cohomology group. We show that in these spacetimes there can be topologically non-trivial configurations of charged fields which do not imply charge quantization. However, the existence of a non-exact electromagnetic field always implies the quantization of charges. Another consequence of the theory for spacetimes with torsion is the fact that it gives rise to two natural quantization units that could be identified with the electric quantization unit (realized inside the quarks) and with the electron charge. In this framework the color charge can have a topological origin, with the number of colors being related to the order of the torsion subgroup. Finally, we discuss the possibility that the quantization of charge may be due to a weak non-exact component of the electromagnetic field extended over cosmological scales.
Almorox Lopez A.
Minguzzi Ettore
Prieto Carlos Tejero
No associations
LandOfFree
Weak gauge principle and electric charge quantization does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Weak gauge principle and electric charge quantization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Weak gauge principle and electric charge quantization will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-134294