Volcanic ash particles as carriers of remanent magnetization in deep-sea sediments from the Kerguelen Plateau

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10

Scientific paper

Carbonate sediments from the Kerguelen Plateau (ODP Leg 120) of Eocene to Pliocene age were investigated with rock magnetic, petrographic and geochemical methods to determine the carriers of remanent magnetization. Magnetic methods showed that the major magnetic minerals were titanomagnetites slightly larger than single domain particles. Submicrometre to micrometre-size grains of titanomagnetite were identified as inclusions in volcanic glass particles or as crystals in lithic clasts. Volcanic fallout ash particles formed the major fraction of the magnetic extract from each sediment sample. Three groups of volcanic ashes were identified: trachytic ashes, basaltic ashes with sideromelane and tachylite shards, and palagonitic ashes. These three groups could be equally well defined based on their magnetic hysteresis properties and alternating field demagnetization curves. The highest coercivities of all samples were found for the tachylite, due to the submicrometre-size titanomagnetite inclusions in the matrix. Trachytic ashes had intermediate magnetic properties between the single-domain-type tachylites and the palagonitic (altered) basaltic ashes with low coercivities. Samples which contained mixtures of these different volcanic ashes could be distinguished from the three types of ashes based on their magnetic characteristics. There was neither evidence of biogenic magnetofossils in the transmission electron micrographs nor did we find magnetic particles derived from continental Antarctica. The presence of dispersed volcanic fallout ashes between visible ash layers suggests continuous explosive volcanic activity on the Kerguelen Plateau in the South Indian Ocean since the early Eocene. The continuous fallout of volcanic ash from explosive volcanism on the Kerguelen Archipelago is the source of the magnetic particles and thus responsible for the magnetostratigraphy of the nannofossil oozes drilled during Leg 120.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Volcanic ash particles as carriers of remanent magnetization in deep-sea sediments from the Kerguelen Plateau does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Volcanic ash particles as carriers of remanent magnetization in deep-sea sediments from the Kerguelen Plateau, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Volcanic ash particles as carriers of remanent magnetization in deep-sea sediments from the Kerguelen Plateau will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1070615

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.