Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2009-09-23
Astronomy and Astrophysics (2009)
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
Letter accepted in A&A for publication
Scientific paper
Most Wolf-Rayet stars (WR) of WC9 sub-type exhibit a dusty circumstellar envelope, but it is still a matter of debate how dust can form in their harsh environment. In a few cases, a pinwheel-like structure of the dusty envelope has been detected. Therefore, it has been suggested that dust formation in all dusty WR stars might be linked to colliding winds in a binary system. We probed the innermost region of the circumstellar dust shell of the deeply embedded WR star WR 118. We carried out spectro-interferometric observations using the AMBER instrument of ESO's Very Large Telescope Interferometer in low-spectral resolution mode (R = 35). The K-band observations were obtained with three 1.8 m telescopes spanning projected baselines between 9.2 and 40.1 m. At high spatial frequencies, the AMBER visibilities exhibit a prominent lobe, indicating that the envelope contains one or several zones with a large local intensity gradient. The strong closure phase signal clearly shows that the circumstellar envelope of WR 118 can only be described by an asymmetric intensity distribution. We show that a pinwheel nebula seen at low inclination is consistent with the AMBER data. Its size was determined to be 13.9+-1.1 mas. WR 118 possibly harbors a pinwheel nebula, which suggests a binary nature of the system. According to our best model, the period of the system would be ~60 days (for d=3 kpc), making WR 118 the shortest-period pinwheel nebula known so far.
Chesneau Olivier
Driebe Thomas
Groh José
Hofmann Karl-Heinz
Millour Florentin
No associations
LandOfFree
VLTI/AMBER unveils a possible dusty pinwheel nebula in WR118 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with VLTI/AMBER unveils a possible dusty pinwheel nebula in WR118, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and VLTI/AMBER unveils a possible dusty pinwheel nebula in WR118 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-181988