Physics – Accelerator Physics
Scientific paper
2010-07-29
Physics
Accelerator Physics
1976 Article
Scientific paper
One consequence of the application of superconductivity to accelerator construction is that the power consumption of accelerators will become much smaller. This raises the old possibility of using high energy protons to make neutrons which are then absorbed by fertile uranium or thorium to make a fissionable material like plutonium that can be burned in a nuclear reactor. The Energy Doubler/Saver being constructed at Fermilab is to be a superconducting accelerator that will produce 1000 GeV protons. The expected intensity of about $10^{12}$ protons per second corresponds to a beam power of about 0.2 MW. The total power requirements of the Doubler will be about 20 MW of which the injector complex will use approximately 13 MW, and the refrigeration of the superconducting magnets will use about 7 MW. Thus the beam power as projected is only a few orders of magnitude less than the accelerator power. But each 1000 GeV proton will produce about 60,000 neutrons in each nuclear cascade shower that is releaseq in a block of uranium, and then most of these neutrons will be absorbed to produce 60,000 plutonium a toms. Each of these when burned will Subsequently release about 0.2 GeV of fission energy to make a total energy of 12,000 GeV (20 ergs) for each 1000 GeV proton. Inasmuch as megawatts are involved, it appears to be worthwhile to consider the cost of making the protons to see if there could be an overall energy production.
No associations
LandOfFree
Very Big Accelerators as Energy Producers does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Very Big Accelerators as Energy Producers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Very Big Accelerators as Energy Producers will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-699600