Universality of Level Spacing Distributions in Classical Chaos

Nonlinear Sciences – Chaotic Dynamics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1016/j.physleta.2008.04.044

We suggest that random matrix theory applied to a classical action matrix can be used in classical physics to distinguish chaotic from non-chaotic behavior. We consider the 2-D stadium billiard system as well as the 2-D anharmonic and harmonic oscillator. By unfolding of the spectrum of such matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe Poissonian behavior in the integrable case and Wignerian behavior in the chaotic case. We present numerical evidence that the action matrix of the stadium billiard displays GOE behavior and give an explanation for it. The findings present evidence for universality of level fluctuations - known from quantum chaos - also to hold in classical physics.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Universality of Level Spacing Distributions in Classical Chaos does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Universality of Level Spacing Distributions in Classical Chaos, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universality of Level Spacing Distributions in Classical Chaos will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-348405

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.