Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

1

Planetary Sciences: Solid Surface Planets: Atmospheres (0343, 1060), Planetary Sciences: Solid Surface Planets: Aurorae And Airglow, Planetary Sciences: Solid Surface Planets: Composition (1060, 3672), Planetary Sciences: Solar System Objects: Venus

Scientific paper

Venus Express (VEX) has been monitoring key nightglow emissions and thermal features (O2 IR nightglow, NO UV nightglow, and nightside temperatures) which contribute to a comprehensive understanding of the global dynamics and circulation patterns above ˜90 km. The nightglow emissions serve as effective tracers of Venus' middle and upper atmosphere global wind system due to their variable peak brightness and horizontal distributions. A statistical map has been created utilizing O2 IR nightglow VEX observations, and a statistical map for NO UV is being developed. A nightside warm layer near 100 km has been observed by VEX and ground-based observations. The National Center for Atmospheric Research (NCAR) Venus Thermospheric General Circulation Model (VTGCM) has been updated and revised in order to address these key VEX observations and to provide diagnostic interpretation. The VTGCM is first used to capture the statistically averaged mean state of these three key observations. This correspondence implies a weak retrograde superrotating zonal flow (RSZ) from ˜80 km to 110 km and above 110 km the emergence of modest RSZ winds approaching 60 m s-1 above ˜130 km. Subsequently, VTGCM sensitivity tests are performed using two tuneable parameters (the nightside eddy diffusion coefficient and the wave drag term) to examine corresponding variability within the VTGCM. These tests identified a possible mechanism for the observed noncorrelation of the O2 and NO emissions. The dynamical explanation requires the nightglow layers to be at least ˜15 km apart and the retrograde zonal wind to increase dramatically over 110 to 130 km.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1681445

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.