Mathematics – Logic
Scientific paper
Nov 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011gecoa..75.6988b&link_type=abstract
Geochimica et Cosmochimica Acta, Volume 75, Issue 22, p. 6988-7005.
Mathematics
Logic
Scientific paper
In soils, mycorrhiza (microscopic fungal hypha) living in symbiosis with plant roots are the biological interface by which plants obtain, from rocks and organic matter, the nutrients necessary for their growth and maintenance. Despite their central role in soils, the mechanism and kinetics of mineral alteration by mycorrhiza are poorly constrained quantitatively. Here, we report in situ quantification of weathering rates from a mineral substrate, (0 0 1) basal plane of biotite, by a surface-bound hypha of Paxillus involutus , grown in association with the root system of a Scots pine, Pinus sylvestris . Four thin-sections were extracted by focused ion beam (FIB) milling along a single hypha grown over the biotite surface. Depth-profile of Si, O, K, Mg, Fe and Al concentrations were performed at the hypha-biotite interface by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX). Large removals of K (50-65%), Mg (55-75%), Fe (80-85%) and Al (75-85%) were observed in the topmost 40 nm of biotite underneath the hypha while Si and O are preserved throughout the depth-profile. A quantitative model of alteration at the hypha-scale was developed based on solid-state diffusion fluxes of elements into the hypha and the break-down/mineralogical re-arrangement of biotite. A strong acidification was also observed with hypha bound to the biotite surface reaching pH < 4.6. When consistently compared with the abiotic biotite dissolution, we conclude that the surface-bound mycorrhiza accelerate the biotite alteration kinetics between pH 3.5 and 5.8 to ˜0.04 μmol biotite m -2 h -1 . Our current work reaffirms that fungal mineral alteration is a process that combines our previously documented bio-mechanical forcing with the μm-scale acidification mediated by surface-bound hypha and a subsequent chemical element removal due to the fungal action. As such, our study presents a first kinetic framework for mycorrhizal alteration at the hypha-scale under close-to-natural experimental conditions.
Banwart Steven A.
Benning Liane G.
Bonneville Steeve
Bray Andrew
Brown Andrew
No associations
LandOfFree
Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-738657