Physics
Scientific paper
Apr 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008njph...10d5010w&link_type=abstract
New Journal of Physics, Volume 10, Issue 4, pp. 045010 (2008).
Physics
23
Scientific paper
We report on the fabrication, detailed characterization and modeling of lateral InGaAs quantum dot molecules (QDMs) embedded in a GaAs matrix and we discuss strategies to fully control their spatial configuration and electronic properties. The three-dimensional morphology of encapsulated QDMs was revealed by selective wet chemical etching of the GaAs top capping layer and subsequent imaging by atomic force microscopy (AFM). The AFM investigation showed that different overgrowth procedures have a profound consequence on the QDM height and shape. QDMs partially capped and annealed in situ for micro-photoluminescence spectroscopy consist of shallow but well-defined quantum dots (QDs) in contrast to misleading results usually provided by surface morphology measurements when they are buried by a thin GaAs layer. This uncapping approach is crucial for determining the QDM structural parameters, which are required for modeling the system. A single-band effective-mass approximation is employed to calculate the confined electron and heavy-hole energy levels, taking the geometry and structural information extracted from the uncapping experiments as inputs. The calculated transition energy of the single QDM shows good agreement with the experimentally observed values. By decreasing the edge-to-edge distance between the two QDs within a QDM, a splitting of the electron (hole) wavefunction into symmetric and antisymmetric states is observed, indicating the presence of lateral coupling. Site control of such lateral QDMs obtained by growth on a pre-patterned substrate, combined with a technology to fabricate gate structures at well-defined positions with respect to the QDMs, could lead to deterministically controlled devices based on QDMs.
Atkinson Paola
Beirne Gareth J.
Bof Bufon C. C.
Ding Fan
Hermannstädter Claus
No associations
LandOfFree
Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1696791