Physics
Scientific paper
Jul 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008jgre..11307006a&link_type=abstract
Journal of Geophysical Research, Volume 113, Issue E7, CiteID E07006
Physics
12
Planetary Sciences: Solid Surface Planets: Hydrology And Fluvial Processes, Planetary Sciences: Solid Surface Planets: Remote Sensing, Hydrology: Geomorphology: Fluvial (1625), Hydrology: Geographic Information Systems (Gis), Planetary Sciences: Solid Surface Planets: Instruments And Techniques
Scientific paper
Martian valley networks have been identified mainly in the Noachian heavily cratered uplands. The geometry of valley networks can be studied using Mars Orbiter Laser Altimeter (MOLA) altimetry, which is sufficient to map large valleys without a detailed 3-D shape of valley networks. Imaging from the Mars Express High Resolution Stereo Camera (HRSC) is used to generate digital elevation models (DEMs) with resolution <=50 m and vertical accuracy <60 m. We studied valleys near Huygens crater and in the Aeolis region both in the Noachian bedrock and on the West Echus plateau in Hesperian bedrock. HRSC DEMs in these areas show that (1) drainage density is 3 times higher than is observed in MOLA data, (2) degree of ramification is 1 order more than with MOLA, (3) transverse valley profiles show a V shape more accurately and a minimum depth of ~20 m, and (4) higher drainage density shows greater headward extension that is not correlated to greater valley depth. The deepest valleys (400 m) are found in the Huygens region, where the density in the DEM is 0.1 km-1, compared to shallow valleys (<100 m) of the Echus region, where the density is higher (~0.3 km-1). These regional differences are due to spatially variable preservation and bedrock lithology. Longitudinal profiles suggest variations in duration of activity: profile concavity is only developed in some Noachian terrains. Valleys visible in HRSC images correspond to topographic features in DEMs showing the same geometry as terrestrial valleys thought to be formed by overland flows and seepage.
Ansan Véronique
Gailhardis Evelyne
Gerhard Neukum
Mangold Nicolas
Masson Philippe
No associations
LandOfFree
Topography of valley networks on Mars from Mars Express High Resolution Stereo Camera digital elevation models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Topography of valley networks on Mars from Mars Express High Resolution Stereo Camera digital elevation models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Topography of valley networks on Mars from Mars Express High Resolution Stereo Camera digital elevation models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1325601