Physics
Scientific paper
Dec 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010agufm.p33b1571s&link_type=abstract
American Geophysical Union, Fall Meeting 2010, abstract #P33B-1571
Physics
[5422] Planetary Sciences: Solid Surface Planets / Ices, [5430] Planetary Sciences: Solid Surface Planets / Interiors
Scientific paper
Europa, the second closest Galilean satellite is one of the targets which are suspected to have an internal ocean. Detection and characterization of the internal ocean is one of the main subjects for Europa orbiter exploration. Although the gravitational data has shown the thickness of the surface H2O layer of 80-170km[1], it can not determine the phase of H2O. The variations in the magnetic field associated with the induced current in the internal ocean can determine the thickness of the layer of ice if satellite's orbits satisfy the required conditions. Observations of tidal amplitude forced by Jupiter can also resolve the thickness of the surface lithosphere[2]. At moment because of the lack of observational constraints there exist two contrasting models:thick ice layer model and thin model. Here we propose new method to detect the ocean directly based on the radiation by high energy neutrino interacted with matter. Schaefer et al[3] have proposed a similar method to determine ice layer thickness. We will focus on the detection of internal ocean for Europa and present the method is suitable for actual situations of Europa exploration by numerical simulations. Neutrino is famous for its traveling at long distance without any interaction with matter. When high energy neutrinos traverse in Europa hadronic showers are produced by the weak interaction with the nucleons that makes the body of Europa. These hadronic showers induces excess electrons. Because of these excess electrons, Cherenkov photons are emitted. When this radiation occurs in the ice layer, radiations whose wave length is over 10cm should be coherent because the scale of the shower becomes small (a few cm) in the ice, which is called as Askaryan effect[3]. Thus, the intensity of the radiation whose frequency is a few GHz should be enhanced. Since ice has a much longer attenuation length than water, the radiations which occur in the surface ice layer could be detected by the antenna outside Europa but those which occur in the internal ocean can not be detected. Difference in the photon flux produced by this effect is expected for different thickness of the ice layer. In the presentation we show the results by simulation on the interaction of high energy neutrinos with Europa by JULIeT, which is the simulation software for neutrino propagation developed by Chiba University[5]. We assume homogeneous flux of high energy neutrino(10^19 eV) and calculate induced radiations. By using the antenna of m^2, a remarkable difference in number of radiation observed up to ice layer of 15km. References [1] Anderson et al. (1998), Europa's Differentiated Internal Structure: Inferences from Four Galileo Encounters, Science, 281, 2019-2022 [2] Hussmann et al. (2010), Measuring tidal deformation at Europa’s surface, Advance in Space Research [3] Schaefer et al. (2009), AN INSTRUMENT FOR MEASURING ICE THICKNESS ON EUROPA, Synergistic Science & Instrument Poster Abstracts Europa Jupiter System Mission Instrument Workshop, pp 38 [4] Askar'yan. (1962), Excess Negative Charge of an Electron-Photon Shower and Its Coherent, JETP, 14, 441-443 [5] Ishibashi et al. JULIeT Users Manual Version 3.3,http://www.ppl.phys.chiba-u.jp/JULIeT/manual/manual.pdf
Kurita Kazuyoshi
Shoji D.
Tanaka Hide-Kazu
No associations
LandOfFree
To determine ice layer thickness of Europa by high energy neutrino does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with To determine ice layer thickness of Europa by high energy neutrino, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and To determine ice layer thickness of Europa by high energy neutrino will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1496793