Physics
Scientific paper
Sep 1999
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999georl..26.2805d&link_type=abstract
Geophysical Research Letters, Volume 26, Issue 18, p. 2805-2808
Physics
37
Seismology: Volcano Seismology, Volcanology: Eruption Monitoring, Seismology: General Or Miscellaneous
Scientific paper
High-resolution velocity models (0.5 km resolution) of the Kilauea caldera region are obtained by the tomographic inversion of both P- and S-wave arrival times. Data are from the permanent Hawaiian Volcano Observatory (HVO) seismic network, a broadband seismic network, and a temporary array of stations centered on the southern boundary of the caldera. A low-velocity P-wave anomaly is imaged centered on the southeastern edge of the caldera, with a velocity contrast of about 10% and a volume of 27 km3. The VP/VS model mimics the spatial extent of the P-wave anomaly, but is partitioned into two discrete anomalous volumes centered on the southern boundary of the caldera and on the upper east rift of the volcano. The corresponding Poisson's ratio in these zones is high (v=0.25-0.32) which is consistent with a densely-cracked, hot volume which may contain partial melt. The large-scale features of the models are consistent with results obtained from an earlier, larger-scale (2 km resolution) tomographic image of Kilauea Volcano based on HVO network data.
Benz Harley M.
Chouet Bernard A.
Dawson Phillip B.
Okubo Paul G.
Villaseñor Antonio
No associations
LandOfFree
Three-dimensional velocity structure of the Kilauea caldera, Hawaii does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Three-dimensional velocity structure of the Kilauea caldera, Hawaii, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three-dimensional velocity structure of the Kilauea caldera, Hawaii will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1558686