Theory and simulation of the generation of whistler-mode chorus

Physics – Plasma Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

65

Magnetospheric Physics: Plasma Waves And Instabilities (2471), Magnetospheric Physics: Radiation Belts, Space Plasma Physics: Wave/Particle Interactions (2483, 6984), Space Plasma Physics: Nonlinear Phenomena (4400, 6944)

Scientific paper

The generation process of whistler-mode chorus emissions is analyzed by both theory and simulation. Driven by an assumed strong temperature anisotropy of energetic electrons, the initial wave growth of chorus is linear. After the linear growth phase, the wave amplitude grows nonlinearly. It is found that the seeds of chorus emissions with rising frequency are generated near the magnetic equator as a result of a nonlinear growth mechanism that depends on the wave amplitude. We derive the relativistic second-order resonance condition for a whistler-mode wave with a varying frequency. Wave trapping of resonant electrons near the equator results in the formation of an electromagnetic electron hole in the wave phase space. For a specific wave phase variation, corresponding to a rising frequency, the electron hole can form a resonant current that causes growth of a wave with a rising frequency. Seeds of chorus elements grow from the saturation level of the whistler-mode instability at the equator and then propagate away from the equator. In the frame of reference moving with the group velocity, the wave frequency is constant. The wave amplitude is amplified by the nonlinear resonant current, which is sustained by the increasing inhomogeneity of the dipole magnetic field over some distance from the equator. Chorus elements are generated successively at the equator so long as a sufficient flux of energetic electrons with a strong temperature anisotropy is present.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Theory and simulation of the generation of whistler-mode chorus does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Theory and simulation of the generation of whistler-mode chorus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Theory and simulation of the generation of whistler-mode chorus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1703877

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.