The WIRCAM Deep Infrared Cluster Survey I: Groups and Clusters at z > 1.1

Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

22 pages, 22 figures, Accepted 4 August 2010

Scientific paper

10.1051/0004-6361/201015135

We use CFHTLS deep optical data, WIRCam Deep Survey (WIRDS) NIR data and XMM data to identify z>1.1 clusters in the CFHTLS D1 and D4 fields. Counterparts to such clusters can not be identified without deep NIR data and as such the total of =1deg2 of J , H & Ks band imaging provided by WIRDS is an indispensable tool in such work. Using public XMM X-ray data, we identify extended X-ray sources in the two fields. The resulting catalogue of extended X-ray sources was analyzed for optical/NIR counterparts, using a red-sequence algorithm. Redshifts of candidate groups and clusters were estimated using the median photometric redshifts of detected counterparts and where available spectroscopic data. Additionally, we surveyed X-ray point sources for potential group systems at the limit of our detection range in the X-ray data. A catalogue of z > 1.1 cluster candidates in the two fields has been compiled and cluster masses, radii and temperatures have been estimated using the scaling relations. The catalogue consists of 15 z > 1.1 candidates. Three of the detections are previously published extended X-ray sources. Of note is JKSC 041 for which we identify possible structures at z = 0.8, z = 0.96, z = 1.13 and z = 1.49. We also make an independent detection of the massive cluster, XMMXCS J2215.9-1738. We use the z > 1.1 catalogue to compare the cluster number counts in these fields with models based on WMAP 7-year cosmology and find that the models slightly over-predict the observations, whilst at z>1.5 we do not detect any clusters. We note that cluster number counts at z > 1.1 are highly sensitive to the cosmological model, however a significant reduction in present statistical (due to available survey area) and systematic (due to cluster scaling relations) uncertainties is required in order to confidently constrain cosmological parameters using cluster number counts at high redshift.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The WIRCAM Deep Infrared Cluster Survey I: Groups and Clusters at z > 1.1 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The WIRCAM Deep Infrared Cluster Survey I: Groups and Clusters at z > 1.1, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The WIRCAM Deep Infrared Cluster Survey I: Groups and Clusters at z > 1.1 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-451578

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.