Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
2008-10-13
Phys.Lett.B671:119-122,2009
Physics
High Energy Physics
High Energy Physics - Theory
12 pages
Scientific paper
10.1016/j.physletb.2008.11.038
Near the horizon of a black brane in Anti-de Sitter (AdS) space and near the AdS boundary, the long-wavelength fluctuations of the metric exhibit hydrodynamic behaviour. The gauge-gravity duality then relates the boundary hydrodynamics for generalized gravity to that of gauge theories with large finite values of 't Hooft coupling. We discuss, for this framework, the hydrodynamics of the shear mode in generalized theories of gravity in d+1 dimensions. It is shown that the shear diffusion coefficients of the near-horizon and boundary hydrodynamics are equal and can be expressed in a form that is purely local to the horizon. We find that the Einstein-theory relation between the shear diffusion coefficient and the shear viscosity to entropy ratio is modified for generalized gravity theories: Both can be explicitly written as the ratio of a pair of polarization-specific gravitational couplings but implicate differently polarized gravitons. Our analysis is restricted to the shear-mode fluctuations for simplicity and clarity; however, our methods can be applied to the hydrodynamics of all gravitational and matter fluctuation modes.
Brustein Ram
Medved A. J. M.
No associations
LandOfFree
The shear diffusion coefficient for generalized theories of gravity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The shear diffusion coefficient for generalized theories of gravity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The shear diffusion coefficient for generalized theories of gravity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-720142