The primary liquid condensation model and the origin of barred olivine chondrules

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8

Scientific paper

Barred olivine (BO) chondrules are some of the most striking objects in chondrites. Their ubiquitous presence and peculiar texture caught the attention of researchers and, as a consequence, considerable effort has been expensed on unraveling their origin(s). Here we report on a detailed study of two types of chondrules: the Classic and the Multiple-Plate Type of BO chondrules from the Essebi (CM2), Bishunpur (LL3.1), Acfer 214 (CH3) and DAG 055 (C3-UNGR) chondrites, and discuss the petrographic and chemical data of their major mineral phases and glasses. Glasses occur as mesostasis or as glass inclusions, the latter either enclosed inside the olivine bars (plates) or still connected to the mesostasis. The chemical composition of all glasses, characterized by being Si Al Ca-rich and free of alkali elements, is similar to those of the constituents (the building blocks, such as chondrules, aggregates, inclusions, mineral fragments, etc.) of CR and CV3 chondrites. They all have high trace element contents (˜10×CI) with unfractionated CI-normalized abundances of refractory trace elements and depletions in moderately volatile and volatile elements with respect to the refractory trace elements. The presence of alkali elements (Na + K + Rb) is coupled with a low Ca content and is only observed in those glasses that have behaved as open systems. This result supports the previous finding that Ca was replaced by alkalis (e.g., Na Ca exchange), presumably through a vapor solid reaction. The glasses apparently are the quenched liquid from which the olivine plates crystallized. However, they do not show any chemical fractionation that could have resulted from the crystallization of the olivines, but rather have a constant chemical compositions throughout the formation of the chondrule. In a previous contribution we were able to demonstrate the role of these liquids in supporting crystal growth directly from the vapor. Here we extend application of the primary liquid condensation model to formulate a new model for the origin of BO chondrules. The primary liquid condensation model is based on the ability of dust-enriched solar-nebula gas to directly condense into a liquid, provided the gas/dust ratio is sufficiently low. Thus, we propose that chondrules can be formed by condensation of a liquid droplet directly from the solar nebula. The extensive variability in chemical composition of BO chondrules, which ranges from alkali-poor to alkali-rich, can be explained by elemental exchange reactions with the cooling nebula. We calculate the chemical composition of the initial liquid droplet from which BO chondrules could have formed and speculate about the physical and chemical conditions that prevail in the specific regions of the solar nebula that can promote creation of these objects.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The primary liquid condensation model and the origin of barred olivine chondrules does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The primary liquid condensation model and the origin of barred olivine chondrules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The primary liquid condensation model and the origin of barred olivine chondrules will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-907779

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.