The plasma filamentation instability in one dimension: nonlinear evolution

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17

Scientific paper

The plasma filamentation instability or beam-Weibel instability generates magnetic fields and accelerates particles in collisionless astrophysical plasma. This instability has been examined with multi-dimensional particle-in-cell (PIC) simulations, demonstrating the formation of current flux tubes. Such simulations could not model a statistically significant number of filaments. Here, we model with a PIC simulation the filamentation instability that is driven by nonrelativistic, cool electron beams in one spatial dimension at an unprecedented resolution. We show unambiguously that the gradient of the magnetic pressure which develops during the quasi-linear evolution of the filamentation instability, gives rise to an electrostatic field component. The interplay of the magnetic and electrostatic fields results in a wavenumber spectrum of the magnetic field that is a power-law, which has been reported previously for multi-dimensional PIC simulations. The magnetic field power spectrum decreases with the exponent -5.7 and that of the electrostatic field with -3.8, yielding a ratio of 3:2. The electromagnetic fields thermalize the electrons. The electrons develop a velocity distribution in the simulation direction that decreases exponentially at low speeds and faster at high speeds. The filamentation instability can thus not efficiently accelerate electrons to high energies. The filaments develop into a stationary final state. The probability distribution of the filament sizes is a Gumbel distribution. In astrophysical settings, this implies that the long exponential tail of this distribution may lead with a reasonable probability to large current filaments, if the filamentation instability develops in a large enough volume. The coherent magnetic fields of large filaments are required to explain the synchrotron emissions of gamma ray bursts.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The plasma filamentation instability in one dimension: nonlinear evolution does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The plasma filamentation instability in one dimension: nonlinear evolution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The plasma filamentation instability in one dimension: nonlinear evolution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1796002

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.