Computer Science – Numerical Analysis
Scientific paper
Oct 1979
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1979a%26a....79..121c&link_type=abstract
Astronomy and Astrophysics, vol. 79, no. 1-2, Oct. 1979, p. 121-127. Research supported by the Science Research Council.
Computer Science
Numerical Analysis
13
Abel Function, Applications Of Mathematics, Astrophysics, Integral Equations, Background Noise, Data Acquisition, Data Processing, Fourier Transformation, Inference, Instrument Errors, Inversions, Laplace Transformation, Numerical Analysis, Problem Solving
Scientific paper
The inversion of Abel's integral equation is discussed. It is established that the problem of inferring the source function from typical data is ill-posed, thus implying that small measurement errors severely distort the numerical solution. Since the measured function carries only rudimentary information on the high frequency components of the unknown distribution, it follows that in practice only the first few Fourier coefficients of the solution (typically smaller than 5) can be determined by employing classical inversion techniques. To extract more detailed information, the problem must be reformulated to exploit any a priori knowledge of the solution. Numerical examples are used to illustrate how the inversion can be dramatically improved by invoking, in a very simple and natural way, information on the local smoothness of the source function. It is strongly recommended that similar non-classical techniques be adopted in practical inversion problems.
No associations
LandOfFree
The inversion of Abel's integral equation in astrophysical problems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The inversion of Abel's integral equation in astrophysical problems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The inversion of Abel's integral equation in astrophysical problems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1387032