Statistics – Computation
Scientific paper
Aug 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007ssrv..131..105z&link_type=abstract
Space Science Reviews, Volume 131, Issue 1-4, pp. 105-132
Statistics
Computation
19
Mercury, Messenger, Core, Rotational State, Magnetic Dynamos, Thermal History
Scientific paper
Current geophysical knowledge of the planet Mercury is based upon observations from ground-based astronomy and flybys of the Mariner 10 spacecraft, along with theoretical and computational studies. Mercury has the highest uncompressed density of the terrestrial planets and by implication has a metallic core with a radius approximately 75% of the planetary radius. Mercury’s spin rate is stably locked at 1.5 times the orbital mean motion. Capture into this state is the natural result of tidal evolution if this is the only dissipative process affecting the spin, but the capture probability is enhanced if Mercury’s core were molten at the time of capture. The discovery of Mercury’s magnetic field by Mariner 10 suggests the possibility that the core is partially molten to the present, a result that is surprising given the planet’s size and a surface crater density indicative of early cessation of significant volcanic activity. A present-day liquid outer core within Mercury would require either a core sulfur content of at least several weight percent or an unusual history of heat loss from the planet’s core and silicate fraction. A crustal remanent contribution to Mercury’s observed magnetic field cannot be ruled out on the basis of current knowledge. Measurements from the MESSENGER orbiter, in combination with continued ground-based observations, hold the promise of setting on a firmer basis our understanding of the structure and evolution of Mercury’s interior and the relationship of that evolution to the planet’s geological history.
Aharonson Oded
Aurnou Jonathan M.
Cheng Andrew F.
Hauck Steven A.
Heimpel Moritz H.
No associations
LandOfFree
The Geophysics of Mercury: Current Status and Anticipated Insights from the MESSENGER Mission does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Geophysics of Mercury: Current Status and Anticipated Insights from the MESSENGER Mission, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Geophysics of Mercury: Current Status and Anticipated Insights from the MESSENGER Mission will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1799939