Physics – Popular Physics
Scientific paper
2005-08-30
Can. J. Phys. 84 (4), 311-324 (2006)
Physics
Popular Physics
37 pp, 13 postscript figures
Scientific paper
10.1139/P06-057
A numerical model of 100 m and 200 m world class sprinting performances is modified using standard hydrodynamic principles to include effects of air temperature, pressure, and humidity levels on aerodynamic drag. The magnitude of the effects are found to be dependent on wind speed. This implies that differing atmospheric conditions can yield slightly different corrections for the same wind gauge reading. In the absence of wind, temperature is found to induce the largest variation in times (0.01 s per $10\dc$ increment in the 100 m), while relative humidity contributes the least (under 0.01 s for all realistic conditions for 100 m). Barometric pressure variations at a particular venue can also introduce fluctuations in performance times on the order of a 0.01 s for this race. The combination of all three variables is essentially additive, and is more important for head-wind conditions that for tail-winds. As expected, calculated corrections in the 200 m are magnified due to the longer duration of the race. The overall effects of these factors on sprint times can be considered a ``second order'' adjustment to previous methods which rely strictly on a venue's physical elevation, but can become important in extreme conditions.
Mureika Jonas Roman
No associations
LandOfFree
The Effects of Temperature, Humidity and Barometric Pressure on Short Sprint Race Times does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Effects of Temperature, Humidity and Barometric Pressure on Short Sprint Race Times, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Effects of Temperature, Humidity and Barometric Pressure on Short Sprint Race Times will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-116657