Computer Science
Scientific paper
Nov 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007gecoa..71.5301s&link_type=abstract
Geochimica et Cosmochimica Acta, Volume 71, Issue 22, p. 5301-5312.
Computer Science
3
Scientific paper
Iron is limiting phytoplankton productivity in large parts of today’s oceans, the so-called HNLC (high nutrient low chlorophyll) areas. It is a key component in photosynthesis during which inorganic carbon fixation in most phytoplankton species is sustained by so-called carbon concentrating mechanisms (CCMs). Here we investigate CCM regulation in the coccolithophore Emiliania huxleyi in response to varying degrees of iron limitation by means of membrane-inlet mass spectrometry. Compared to iron replete conditions rates of both active CO2 and HCO3- uptake were markedly reduced under iron limitation leading to significantly diminished growth rates. Moreover, there was a concomitant decrease in CCM efficiency, reflected in an increased CO2 loss from the cell in relation to carbon fixation. Under such conditions higher values for carbon isotope fractionation (γp) would be expected. However, direct measurements of γp showed that carbon isotope fractionation was insensitive to changes in growth rates and CCM activity. This can be explained by concomitant changes in internal DIC fluxes in and out of the chloroplast as demonstrated with a simple cell model comprising two compartments. Thus, carbon isotope fractionation reflects the ability of phytoplankton to actively control their inorganic carbon acquisition depending on environmental conditions. The insensitivity of carbon isotope fractionation to changes in the availability of iron could be of interest for paleoreconstructions in the HNLC areas of today’s oceans.
Burkhardt S.
Riebesell Ulf
Rost Björn
Schulz K. G.
Thoms Silke
No associations
LandOfFree
The effect of iron availability on the regulation of inorganic carbon acquisition in the coccolithophore Emiliania huxleyi and the significance of cellular compartmentation for stable carbon isotope fractionation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The effect of iron availability on the regulation of inorganic carbon acquisition in the coccolithophore Emiliania huxleyi and the significance of cellular compartmentation for stable carbon isotope fractionation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The effect of iron availability on the regulation of inorganic carbon acquisition in the coccolithophore Emiliania huxleyi and the significance of cellular compartmentation for stable carbon isotope fractionation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-740020