Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2011-01-25
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
Submitted to ApJ, 14 pages, 9 figures
Scientific paper
We carry out the first time-dependent numerical MagnetoHydroDynamic modeling of an extrasolar planetary system to study the interaction of the stellar magnetic field and wind with the planetary magnetosphere and outflow. We base our model on the parameters of the HD 189733 system, which harbors a close-in giant planet. Our simulation reveals a highly structured stellar corona characterized by sectors with different plasma properties. The star-planet interaction varies in magnitude and complexity, depending on the planetary phase, planetary magnetic field strength, and the relative orientation of the stellar and planetary fields. It also reveals a long, comet-like tail which is a result of the wrapping of the planetary magnetospheric tail by its fast orbital motion. A reconnection event occurs at a specific orbital phase, causing mass loss from the planetary magnetosphere that can generate a hot spot on the stellar surface. The simulation also shows that the system has sufficient energy to produce hot-spots observed in Ca II lines in giant planet hosting stars. However, the short duration of the reconnection event suggests that such SPI cannot be observed persistently.
Cohen Ofer
Drake Jeremy J.
Garraffo Cecilia
Gombosi Tamas I.
Kashyap Vinay L.
No associations
LandOfFree
The Dynamics of Stellar Coronae Harboring Hot-jupiters I. A Time-dependent MHD Simulation of the Interplanetary Environment in the HD 189733 Planetary System does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Dynamics of Stellar Coronae Harboring Hot-jupiters I. A Time-dependent MHD Simulation of the Interplanetary Environment in the HD 189733 Planetary System, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Dynamics of Stellar Coronae Harboring Hot-jupiters I. A Time-dependent MHD Simulation of the Interplanetary Environment in the HD 189733 Planetary System will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-542635