Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics
Scientific paper
2009-09-14
Astronomy and Astrophysics
Astrophysics
Cosmology and Extragalactic Astrophysics
To appear in MNRAS. Updated in response to referee report
Scientific paper
We have searched for star-forming galaxies at z~7 by applying the Lyman-break technique to newly-released 1.1micron Y-band images from WFC3 on HST. By comparing these images of the Hubble Ultra Deep Field with the ACS z'-band (0.85micron), we identify objects with red colours, (z'-Y)_AB>1.3), consistent with the Ly-alpha forest absorption at z~6.7-8.8. We identify 12 of these z'-drops down to a limiting magnitude Y_AB<28.5 (equivalent to a star formation rate of 1.3M_sun/yr at z=7.1), which are undetected in the other ACS filters. We use the WFC3 J-band image to eliminate contaminant low mass Galactic stars, which typically have redder colours than z~7 galaxies. One of our z'-drops is a probably a T-dwarf star. The z~7 z'-drops have much bluer spectral slopes than Lyman-break galaxies at lower redshift. Our brightest z'-drop is not present in the NICMOS J-band image of the same field taken 5 years before, and is a possible transient object. From the 10 remaining z~7 candidates we determine a lower limit on the star formation rate density of 0.0017M_sun/yr/Mpc^3 for a Salpeter initial mass function, which rises to 0.0025-0.0034M_sun/yr/Mpc^3 after correction for luminosity bias. The star formation rate density is a factor of ~10 less than that at z=3-4, and is about half the value at z~6. While based on a single deep field, our results suggest that this star formation rate density would produce insufficient Lyman continuum photons to reionize the Universe unless the escape fraction of these photons is extremely high (f_esc>0.5), and the clumping factor of the Universe is low. Even then, we need to invoke a large contribution from galaxies below our detection limit. The apparent shortfall in ionizing photons might be alleviated if stellar populations at high redshift are low metallicity or have a top-heavy IMF.
Bunker Andrew
Chiu Kuenley
Ellis Richard
Hickey Samantha
Jarvis Matt
No associations
LandOfFree
The Contribution of High Redshift Galaxies to Cosmic Reionization: New Results from Deep WFC3 Imaging of the Hubble Ultra Deep Field does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Contribution of High Redshift Galaxies to Cosmic Reionization: New Results from Deep WFC3 Imaging of the Hubble Ultra Deep Field, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Contribution of High Redshift Galaxies to Cosmic Reionization: New Results from Deep WFC3 Imaging of the Hubble Ultra Deep Field will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-563275