Physics – Geophysics
Scientific paper
Mar 2001
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001georl..28.1091s&link_type=abstract
Geophysical Research Letters, Volume 28, Issue 6, p. 1091-1094
Physics
Geophysics
42
Hydrology: Geomorphology, Hydrology: Stochastic Processes, Mathematical Geophysics: Modeling, Mathematical Geophysics: Fractals And Multifractals
Scientific paper
Landslide size distributions generally exhibit power-law scaling over a limited scale range. The range is set by the mapping resolution, by the number of observed events, and by the slope failure process itself. This property of self-similarity is an important insight into the physics of hillslope failure. Typically, however, a large proportion of the landslide data does not fit a simple power law. These data are always ignored in order to characterize the scaling. We show that landslide data sets from New Zealand and Taiwan exhibit two scaling regimes, separated by a crossover scale that is purely an artifact of mapping resolution. Below this scale the landslide data are undersampled. We propose a general model for the size distribution of observed landslides which can account for the whole population of mapped slope failures. The model quantifies the undersampling of smaller landslides and provides an improved estimation of the power-law scaling of larger landslides. Estimates of this scaling suggest that the area disturbed by landsliding, and perhaps the landslide sediment yield, are essentially dependent on the frequency of smaller landslides. Higher resolution landslide maps will be required in order to quantify these fluxes. Our results also indicate that the probability of extreme landslide events is less than previous studies would predict.
Hovius Niels
Stark Colin P.
No associations
LandOfFree
The characterization of landslide size distributions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The characterization of landslide size distributions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The characterization of landslide size distributions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1006991