Physics – Chemical Physics
Scientific paper
1994-03-15
Physics
Chemical Physics
J. of the American Chemical Society
Scientific paper
The calculation of the solvation properties of a single water molecule in liquid water is carried out in two ways. In the first, the water molecule is placed in a cavity and the solvent is treated as a dielectric continuum. This model is analyzed by numerically solving the Poisson equation using the DelPhi program. The resulting solvation properties depend sensitively on the shape and size of the cavity. In the second method, the solvent and solute molecules are treated explicitly in molecular dynamics simulations using Ewald boundary conditions. We find a 2 kcal/mole difference in solvation free energies predicted by these two methods when standard cavity radii are used. In addition, dielectric continuum theory assumes that the solvent reacts solely by realigning its electric moments linearly with the strength of the solute's electric field; the results of the molecular simulation show important non-linear effects. Non-linear solvent effects are generally of two types: dielectric saturation, due to solvent-solute hydrogen bonds, and electrostriction, a decrease in the solute cavity due to an increased electrostatic interaction. We find very good agreement between the two methods if the radii defining the solute cavity used in the continuum theory is decreased with the solute charges,
Berne Bruce J.
Rick Steven W.
No associations
LandOfFree
The Aqueous Solvation of Water: A Comparison of Continuum Methods with Molecular Dynamics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Aqueous Solvation of Water: A Comparison of Continuum Methods with Molecular Dynamics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Aqueous Solvation of Water: A Comparison of Continuum Methods with Molecular Dynamics will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-431836