Physics – Plasma Physics
Scientific paper
Jan 2000
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000jgr...105..385w&link_type=abstract
Journal of Geophysical Research, Volume 105, Issue A1, p. 385-394
Physics
Plasma Physics
16
Magnetospheric Physics: Magnetopause, Cusp, And Boundary Layers, Magnetospheric Physics: Mhd Waves And Instabilities, Magnetospheric Physics: Solar Wind/Magnetosphere Interactions, Space Plasma Physics: Kinetic And Mhd Theory
Scientific paper
Despite the existence of flank waveguide modes which are Kelvin-Helmholtz unstable, the flanks of the terrestrial magnetosphere are observed to be remarkably stable and free of nonlinear disturbances. We suggest the explanation may be found in a more detailed stability analysis which shows that localized disturbances are convectively unstable in the Earth's rest frame. This means that as a wave packet grows and broadens, it also propagates at a sufficiently high speed so it is convected away leaving ultimately no disturbance at any fixed point in space (as t->∞). We estimate that the magnetopause surface wave has an e-folding length of the order of an Earth radius and soon becomes nonlinear, resulting in a magnetopause boundary layer [e.g., Manuel and Samson, 1993]. In contrast, the waveguide modes (which penetrate deep into the body of the magnetosphere) should grow by no more than a factor of about e as they propagate around the flanks to the tail. This also explains why theorists have had such success at modeling basic ULF waveguide processes with linear theory and why nonlinear waves in, or disruptions to, the body of the magnetospheric flanks are not observed: Wavepackets may grow by only a small amount as they propagate into the tail. Ultimately, they leave the flank undisturbed and with the appearance of stability, although they are actually convectively unstable.
Brevdo Leonid
Mills Katharine J.
Ruderman Michael S.
Wright Andrew. N.
No associations
LandOfFree
The absolute and convective instability of the magnetospheric flanks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The absolute and convective instability of the magnetospheric flanks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The absolute and convective instability of the magnetospheric flanks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-807539