Astronomy and Astrophysics – Astrophysics
Scientific paper
Jun 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008icar..195..778n&link_type=abstract
Icarus, Volume 195, Issue 2, p. 778-791.
Astronomy and Astrophysics
Astrophysics
18
Scientific paper
We have analyzed infrared spectra of Titan recorded by the Cassini Composite Infrared Spectrometer (CIRS) to measure the isotopic ratio 12C/13C in each of three chemical species in Titan's stratosphere: CH4, C2H2 and C2H6. This is the first measurement of 12C/13C in any C2 molecule on Titan, and the first measurement of 12CH4/13CH4 (non-deuterated) on Titan by remote sensing. Our spectra cover five widely-spaced latitudes, 65° S to 71° N and we have searched for both latitude variability of 12C/13C within a given species, and also for differences between the 12C/13C in the three gases. For CH4 alone, we find C12/C13=76.6±2.7 (1-σ), essentially in agreement with the 12CH4/13CH4 measured by the Huygens Gas Chromatograph/Mass Spectrometer instrument (GCMS) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779 784]: 82.3±1.0, and also with measured values in H13CN and 13CH3D by CIRS at lower precision [Bézard, B., Nixon, C., Kleiner, I., Jennings, D., 2007. Icarus 191, 397 400; Vinatier, S., Bézard, B., Nixon, C., 2007. Icarus 191, 712 721]. For the C2 species, we find C12/C13=84.8±3.2 in C2H2 and 89.8±7.3 in C2H6, a possible trend of increasingly value with molecular mass, although these values are both compatible with the Huygens GCMS value to within error bars. There are no convincing trends in latitude. Combining all fifteen measurements, we obtain a value of C12/C13=80.8±2.0, also compatible with GCMS. Therefore, the evidence is mounting that 12C/13C is some 8% lower on Titan than on the Earth (88.9, inorganic standard), and lower than typical for the outer planets (88±7 [Sada, P.V., McCabe, G.H., Bjoraker, G.L., Jennings, D.E., Reuter, D.C., 1996. Astrophys. J. 472, 903 907]). There is no current model for this enrichment, and we discuss several mechanisms that may be at work.
Achterberg Richard K.
Bezard Bruno
Bjoraker Gordon L.
Coustenis Athena
de Kok Remco
No associations
LandOfFree
The 12C/13C isotopic ratio in Titan hydrocarbons from Cassini/CIRS infrared spectra does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The 12C/13C isotopic ratio in Titan hydrocarbons from Cassini/CIRS infrared spectra, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The 12C/13C isotopic ratio in Titan hydrocarbons from Cassini/CIRS infrared spectra will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1569208