Nonlinear Sciences – Chaotic Dynamics
Scientific paper
2002-05-10
Nonlinear Sciences
Chaotic Dynamics
22 pages, 0 figures. Published in Phys. Rev. E 63, 066116(9) (2001)
Scientific paper
The time evolution equations of a simplified isolated ideal gas, the "tetrahe- dral" gas, are derived. The dynamical behavior of the LMC complexity [R. Lopez-Ruiz, H. L. Mancini, and X. Calbet, Phys. Lett. A 209, 321 (1995)] is studied in this system. In general, it is shown that the complexity remains within the bounds of minimum and maximum complexity. We find that there are certain restrictions when the isolated "tetrahedral" gas evolves towards equilibrium. In addition to the well-known increase in entropy, the quantity called disequilibrium decreases monotonically with time. Furthermore, the trajectories of the system in phase space approach the maximum complexity.
Calbet Xavier
López-Ruiz Ricardo
No associations
LandOfFree
Tendency to Maximum Complexity in a Non-Equilibrium Isolated System does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Tendency to Maximum Complexity in a Non-Equilibrium Isolated System, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tendency to Maximum Complexity in a Non-Equilibrium Isolated System will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-382373