Physics
Scientific paper
Nov 2001
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001jgr...10624621h&link_type=abstract
Journal of Geophysical Research, Volume 106, Issue A11, p. 24621-24636
Physics
3
Ionosphere: Auroral Ionosphere, Magnetospheric Physics: Auroral Phenomena, Magnetospheric Physics: Storms And Substorms
Scientific paper
The auroral absorption spike event, occurring generally at the onset of a substorm, is distinguished by its high intensity and short duration. This paper reports the presence of a fine structure within the spike event. Analysis of selected examples using the Morlet wavelet shows that within the 1-2 min duration of the spike are significant modulations with periodicities in the bands 15-60 s (67-16 mHz), and 5-10 s (200-100 mHz), the former being the stronger. The slower fluctuations can amount to more than 10% of the absorption, and they were observed in every example (seven out of nine) in which the spike was moving poleward. They were absent in the other two cases, when the spike moved equatorward. In the examples studied, the 15-60 s absorption pulsations were accompanied by magnetic micropulsations of impulsive type (Pi) having a periodity that was similar or harmonically related. The connection is only close while the spike event is moving. Consideration of the details suggests that both the magnetic and the absorption pulsations are related to the acceleration process at substorm onset, the flux of energetic particles into the auroral zone producing the radio absorption being modulated with, though not by, the geomagnetic field variations. The 5-10 s pulsations, which are considerably weaker, appeared in both the absorption and the magnetic records, but in this case with no obvious connection between them.
Annan J. D.
Hargreaves J. C.
Hargreaves John Keith
Ranta Aarne
No associations
LandOfFree
Temporal fine structure of nighttime spike events in auroral radio absorption, studied by a wavelet method does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Temporal fine structure of nighttime spike events in auroral radio absorption, studied by a wavelet method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temporal fine structure of nighttime spike events in auroral radio absorption, studied by a wavelet method will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1554537