Sum rules for Confining Potentials

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

16 pages

Scientific paper

Using the Green's function associated with the one-dimensional Schroedinger equation it is possible to establish a hierarchy of sum rules involving the eigenvalues of confining potentials which have only a boundstate spectrum. For some potentials the sum rules could lead to divergences. It is shown that when this happens it is possible to examine the separate sum rules satisfied by the even and odd eigenstates of a symmetric confining potential and by subtraction cancel the divergences exactly and produce a new sum rule which is free of divergences. The procedure is illustrated by considering symmetric power law potentials and the use of several examples. One of the examples considered shows that the zeros of the Airy function and its derivative obey a sum rule and this sum rule is verified. It is also shown how the procedure may be generalised to establish sum rules for arbitrary symmetric confining potentials.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Sum rules for Confining Potentials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Sum rules for Confining Potentials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sum rules for Confining Potentials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-297733

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.