Physics – Quantum Physics
Scientific paper
2006-10-31
Phys. Rev. A 75, 042321 (2007)
Physics
Quantum Physics
9 pages, 1 Figure
Scientific paper
10.1103/PhysRevA.75.042321
A critical step in experimental quantum information processing (QIP) is to implement control of quantum systems protected against decoherence via informational encodings, such as quantum error correcting codes, noiseless subsystems and decoherence free subspaces. These encodings lead to the promise of fault tolerant QIP, but they come at the expense of resource overheads. Part of the challenge in studying control over multiple logical qubits, is that QIP test-beds have not had sufficient resources to analyze encodings beyond the simplest ones. The most relevant resources are the number of available qubits and the cost to initialize and control them. Here we demonstrate an encoding of logical information that permits the control over multiple logical qubits without full initialization, an issue that is particularly challenging in liquid state NMR. The method of subsystem pseudo-pure state will allow the study of decoherence control schemes on up to 6 logical qubits using liquid state NMR implementations.
Cappellaro Paola
Cory David G.
Havel Timothy F.
Hodges James S.
No associations
LandOfFree
Subsystem Pseudo-pure States does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Subsystem Pseudo-pure States, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Subsystem Pseudo-pure States will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-47885