Physics – Quantum Physics
Scientific paper
2008-11-10
Physics
Quantum Physics
11 pages, 8 figures. SPIE Optics and Photonics 2008 proceeding (San Diego, CA)
Scientific paper
10.1117/12.795474
Entangled multi-spatial-mode fields have interesting applications in quantum information, such as parallel quantum information protocols, quantum computing, and quantum imaging. We study the use of a nondegenerate four-wave mixing process in rubidium vapor at 795 nm to demonstrate generation of quantum-entangled images. Owing to the lack of an optical resonator cavity, the four-wave mixing scheme generates inherently multi-spatial-mode output fields. We have verified the presence of entanglement between the multi-mode beams by analyzing the amplitude difference and the phase sum noise using a dual homodyne detection scheme, measuring more than 4 dB of squeezing in both cases. This paper will discuss the quantum properties of amplifiers based on four-wave-mixing, along with the multi mode properties of such devices.
Boyer Vincent
Lett Paul D.
Marino Alberto M.
Pooser Raphael C.
No associations
LandOfFree
Squeezed Light and Entangled Images from Four-Wave-Mixing in Hot Rubidium Vapor does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Squeezed Light and Entangled Images from Four-Wave-Mixing in Hot Rubidium Vapor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Squeezed Light and Entangled Images from Four-Wave-Mixing in Hot Rubidium Vapor will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-724419