Simulations of a Magnetic Fluctuation Driven Large Scale Dynamo and Comparison with a Two-scale Model

Physics – Plasma Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

12 pages, 34 figures

Scientific paper

Models of large scale (magnetohydrodynamic) dynamos (LSD) which couple large scale field growth to total magnetic helicity evolution best predict the saturation of LSDs seen in simulations. For the simplest so called "{\alpha}2" LSDs in periodic boxes, the electromotive force driving LSD growth depends on the difference between the time-integrated kinetic and current helicity associated with fluctuations. When the system is helically kinetically forced (KF), the growth of the large scale helical field is accompanied by growth of small scale magnetic (and current) helicity which ultimately quench the LSD. Here, using both simulations and theory, we study the complementary magnetically forced(MF) case in which the system is forced with an electric field that supplies magnetic helicity. For this MF case, the kinetic helicity becomes the back-reactor that saturates the LSD. Simulations of both MF and KF cases can be approximately modeled with the same equations of magnetic helicity evolution, but with complementary initial conditions. A key difference between KF and MF cases is that the helical large scale field in the MF case grows with the same sign of injected magnetic helicity, whereas the large and small scale magnetic helicities grow with opposite sign for the KF case. The MF case can arise even when the thermal pressure is approximately smaller than the magnetic pressure, and requires only that helical small scale magnetic fluctuations dominate helical velocity fluctuations in LSD driving. We suggest that LSDs in accretion discs and Babcock models of the solar dynamo are actually MF LSDs.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Simulations of a Magnetic Fluctuation Driven Large Scale Dynamo and Comparison with a Two-scale Model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Simulations of a Magnetic Fluctuation Driven Large Scale Dynamo and Comparison with a Two-scale Model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simulations of a Magnetic Fluctuation Driven Large Scale Dynamo and Comparison with a Two-scale Model will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-156157

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.