Physics – Space Physics
Scientific paper
2010-03-31
ApJ, May 2010-10 v714 issue
Physics
Space Physics
Scientific paper
Here, we present numerical simulations of magnetic flux buoyantly rising from a granular convection zone into the low corona. We study the complex interaction of the magnetic field with the turbulent plasma. The model includes the radiative loss terms, non-ideal equations of state, and empirical corona heating. We find that the convection plays a crucial role in shaping the morphology and evolution of the emerging structure. The emergence of magnetic fields can disrupt the convection pattern as the field strength increases, and form an ephemeral region-like structure, while weak magnetic flux emerges and quickly becomes concentrated in the intergranular lanes, i.e. downflow regions. As the flux rises, a coherent shear pattern in the low corona is observed in the simulation. In the photosphere, both magnetic shearing and velocity shearing occur at a very sharp polarity inversion line (PIL). In a case of U-loop magnetic field structure, the field above the surface is highly sheared while below it is relaxed.
Abbett William P.
der Holst Bart van
Fang Fang
IV Ward Manchester
No associations
LandOfFree
Simulation of Flux Emergence from the Convection Zone to the Corona does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Simulation of Flux Emergence from the Convection Zone to the Corona, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simulation of Flux Emergence from the Convection Zone to the Corona will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-581181