Physics – Geophysics
Scientific paper
Dec 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007georl..3423402j&link_type=abstract
Geophysical Research Letters, Volume 34, Issue 23, CiteID L23402
Physics
Geophysics
14
Hydrology: River Channels (0483, 0744), Hydrology: Geomorphology: Fluvial (1625), Marine Geology And Geophysics: Marine Sediments: Processes And Transport, Hydrology: Sediment Transport (4558), Hydrology: Sedimentation (4863)
Scientific paper
No genetic model can explain the variability in distributary network pattern on modern deltas. Here we derive scaling relationships for two processes known to create distributary channels and, with these laws, construct a simple model for distributary network evolution. The first process is mouth-bar deposition at the shoreline and subsequent channel bifurcation; the second is avulsion-the wholesale abandonment of a channel in favor of a new path. The former creates relatively small networks with power-law distributions of channel length; the latter generates relatively few, backwater-scale distributaries. Frequency-magnitude plots of channel length on natural deltas agree with theoretical predictions and show a clear separation in scale that reflects these processes: Mouth-bar distributary lengths scale with the width of the parent channel, and avulsive distributary lengths scale with the backwater length; intermediate channel lengths are relatively rare. Wave energy controls network topology by suppressing mouth-bar development, thereby preferentially eliminating smaller-scale distributaries.
Jerolmack Douglas J.
Swenson John B.
No associations
LandOfFree
Scaling relationships and evolution of distributary networks on wave-influenced deltas does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Scaling relationships and evolution of distributary networks on wave-influenced deltas, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scaling relationships and evolution of distributary networks on wave-influenced deltas will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1758046