Remote atomic clock synchronization via satellites and optical fibers

Physics – Instrumentation and Detectors

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10e-15 (relative, 1 day averaging) and time scales can be synchronized with an uncertainty of one nanosecond. Future improvements of worldwide clock comparisons will require also an improvement of the local signal distribution systems. For example, the future ACES (atomic clock ensemble in space) mission shall demonstrate remote time scale comparisons at the uncertainty level of 100 ps. To ensure that the ACES ground instrument will be synchronized to the local time scale at PTB without a significant uncertainty contribution, we have developed a means for calibrated clock comparisons through optical fibers. An uncertainty below 50 ps over a distance of 2 km has been demonstrated on the campus of PTB. This technology is thus in general a promising candidate for synchronization of enhanced time transfer equipment with the local realizations of UTC . Based on these experiments we estimate the uncertainty level for calibrated time transfer through optical fibers over longer distances. These findings are compared with the current status and developments of satellite based time transfer systems, with a focus on the calibration techniques for operational systems.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Remote atomic clock synchronization via satellites and optical fibers does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Remote atomic clock synchronization via satellites and optical fibers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote atomic clock synchronization via satellites and optical fibers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-427608

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.