Physics
Scientific paper
Mar 1996
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996gecoa..60..765b&link_type=abstract
Geochimica et Cosmochimica Acta, Volume 60, Issue 5, p. 765-785.
Physics
8
Scientific paper
Visible to infrared reflectance spectroscopic analyses (0.3 25 μm) have been performed on sediments from the Dry Valleys region of Antarctica. Sample characterization for these sediments includes extensive geochemical analyses and X-ray diffraction (XRD). The reflectance spectra and XRD indicate major amounts of quartz, feldspar, and pyroxene in these samples and lesser amounts of carbonate, mica, chlorite, amphibole, illite, smectite, and organic matter. Calcite is the primary form of carbonate present in these Lake Hoare sediments based on the elemental abundances and spectroscopic features. The particle size distribution of the major and secondary components influences their detection in mixtures and this sensitivity to particle size is manifested differently in the “volume scattering” and “surface scattering” infrared regions. The Christiansen feature lies between these two spectral regimes and is influenced by the spectral properties of both regions. For these mixtures the Christiansen feature was found to be dependent on physical parameters, such as particle size and sample texture, as well as the mineralogy. Semiquantitative spectroscopic detection of calcite and organic material has been tested in these quartz- and feldspar-rich sediments. The relative spectral band depths due to organics and calcite correlate in general with the wt% C from organic matter and carbonate. The amounts of organic matter and carbonate present correlate with high Br and U abundances and high Ca and Sr abundances, respectively. Variation in the elemental abundances was overall minimal, which is consistent with a common sedimentary origin for the forty-two samples studied here from Lake Hoare.
Andersen David W.
Bishop Janice L.
Enolert Peter A. J.
Fröschl Heinz
Koeberl Christian
No associations
LandOfFree
Reflectance spectroscopy and geochemical analyses of Lake Hoare sediments, Antarctica: Implications for remote sensing of the Earth and Mars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Reflectance spectroscopy and geochemical analyses of Lake Hoare sediments, Antarctica: Implications for remote sensing of the Earth and Mars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reflectance spectroscopy and geochemical analyses of Lake Hoare sediments, Antarctica: Implications for remote sensing of the Earth and Mars will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1645893