Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1993-10-04
Physics
High Energy Physics
High Energy Physics - Theory
78 pages, PostScript. Ph.D. thesis, The Niels Bohr Institute, University of Copenhagen, Sep. 1993
Scientific paper
We describe the idea of studying quantum gravity by means of dynamical triangulations and give examples of its implementation in 2, 3 and 4 space time dimensions. For $d=2$ we consider the generic hermitian 1-matrix model. We introduce the so-called moment description which allows us to find the complete perturbative solution of the generic model both away from and in the continuum. Furthermore we show how one can easily by means of the moment variables define continuum times for the model so that its continuum partition function agrees with the partition function of the Kontsevich model except for some complications at genus zero. Finally we study the non perturbative definition of 2D quantum gravity provided by stochastic stabilization, showing how well known matrix model characteristica can be given a simple quantum mechanical interpretation and how stochastic quantization seems to hint to us the possibility of a strong coupling expansion of 2D quantum gravity. For $d=3$ and $d=4$ we consider the numerical approach to dynamically triangulated gravity. We present the results of simulating pure gravity as well as gravity interacting with matter fields. For $d=4$ we describe in addition the effect of adding to the Einstein Hilbert action a higher derivative term.
No associations
LandOfFree
Random Geometries in Quantum Gravity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Random Geometries in Quantum Gravity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Random Geometries in Quantum Gravity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-289306